СТРОИТЕЛЬНАЯ ФИЗИКА, ВЛАГОСОДЕРЖАНИЕ

14

СТРОИТЕЛЬНАЯ ФИЗИКА, ВЛАГОСОДЕРЖАНИЕ

14.11

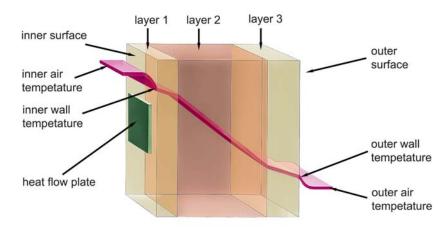
Строительная физика, влагосодержание	Стр.
neW! Измерение коэффициента теплопередачи (U) и теплового потока	14.02
Пластина для измерения теплового потока Датчики влагосодержания Влагосодержание в древесине, Ручной датчик для мобильных измерений	14.04 14.06
new! Датчик влагосодержания древесины для продолжительных измерений Детектор точки росы Зонд для обнаружения воды	14.07 14.08 14.08
new! Датчик для определения влагосодержания в гранулятах new! Тензиометр для определения влажности почвы	14.09
Цифровая пластина для измерения теплово	

датчиком температуры

nde ({

39

собой право вносить технические изменения


СТРОИТЕЛЬНАЯ ФИЗИКА

Измерение коэффициента теплопередачи (U) и теплового потока

Теплопередача строительной конструкции зависит от теплопроводности используемого материала, от толщины слоёв и геометрических характеристик конструкции (напр., плоская стена, цилиндрическая стенка трубы и т.д.), а также от условий окружающей среды с обеих сторон конструкции.

Характер изменения температуры

Коэффициент теплопередачи (U) элемента конструкции показывает, какое количество теплоты проходит через неё (независимо от количества слоёв) в секунду, через 1 м² теплообменной поверхности, при разности температур окружающей среды изнутри и снаружи в 1°К. Тем самым, коэффициент теплопередачи (U) включает в себя коэффициенты теплоотдачи, т.е. учитывается передаваемая тепловая энергия на пограничных поверхностях изнутри и снаружи. Коэффициент теплопередачи (U) имеет международное определение в стандарте ISO 6946 и измеряется в Вт/(м²·К).

Коэффициент теплопередачи (U) является обратной величиной термического сопротивления (R) = сумме термических сопротивлений каждого слоя элемента конструкции + внешнее термическое сопротивление между конструкцией и внешней средой (например воздухом).

Полное термическое сопротивление (R) = термические сопротивления материалов + внешнее термическое сопротивление, внутри и снаружи.

Коэффициент теплопередачи (U) является важным показателем в строительной промышленности, где необходимо определение теплопотерь в результате теплопередачи через различные конструкции. Теплопотери через наружные ограждения - термин, описывающий энергосберегающие характеристики теплоизоляционных элементов наружных ограждений здания (теплоизоляция крыш, наружных стен, окон и полов).

В Германии для каждого жилого здания существует максимально допустимый U-коэффициент (в зависимости от площади наружной поверхности и внутреннего объёма). Данные предписания закреплены в Законе об энергосбережении Германии (EnEV).

Измерение равновесной влажности

Равновесная влажность материала - это устойчивый уровень относительной влажности в окружающей среде, при которой материал ни поглощает, ни испаряет влагу.

Все строительные материалы, в той или иной степени, поглощают или испаряют влагу из окружающего воздуха. Материалы гигроскопичны, то есть они пытаются установить равновесие по влажности с окружающим воздухом. Материал и окружающих воздух, в зависимости от их температуры, устанавливают баланс между поглощением и выделением влаги по отношению друг к другу. Таким образом, каждый материал содержит определённое количество влаги (измеряемое в процентом соотношении) в зависимости от температуры и влажности воздуха.

В состоянии равновесия, отношение между содержанием воды и равновесной влажностью материала может быть графически отображено кривой - изотермой сорбции. На изотерме сорбции, при заданной постоянной температуре, указывается для каждого значения влажности соответствующее содержание влаги в материале. Если изменяется состав или качество материала, то также изменяется его сорбционное поведение и, следовательно, изотерма сорбции. Из-за сложности сорбционного процесса изотермы нельзя определить путём расчётов - их необходимо записывать экспериментально.

оставляем

собой

право

вносить

технические изменения

СТРОИТЕЛЬНАЯ ФИЗИКА

Система ALMEMO® для измерения коэффициента теплопередачи (U) и теплового потока

Коэффициент теплопередачи (U) является важным показателем в строительной промышленности, где необходимо определение теплопотерь в результате теплопередачи через различные конструкции. Теперь с измерительной системой ALMEMO® возможно измерить и записать все физические параметры элементов здания (напр., стен, кровли и т.д.) для расчёта коэффициента U и других важных показателей тепловой энергии.

Принцип измерения:

Измерительный принцип для определения тепловых потерь на разделяющих стенах (напр., стены зданий, системы отопления и т.д.) основан на использовании пластины (датчика) измерения теплового потока, установленной на поверхности конструкции. Используя известные тепловые характеристики пластины и термоэлектрически измеренного температурного градиента внутри пластины, измерительная система ALMEMO® может измерить плотность теплового потока (q) в Вт/м².

Система ALMEMO® может также использоваться для измерения температуры поверхности на любой стороне элемента конструкции, а также температуры воздуха изнутри и снаружи. На основании этих результатов можно рассчитать термический коэффициент.

Расчёт основывается на циклическом получении средних значений температур и плотности теплового потока. Влияние теплоёмкости элемента конструкции (временные сдвиги фаз между температурой и тепловым потоком) на расчёт коэффициента U в длительном промежутке времени является незначительным и рассчитанное среднее значение будет равно фактическому коэффициенту U.

Рабочий диапазон:

Для обеспечения стабильного расчёта коэффициента теплопередачи U, данный расчёт необходимо производить в определённых условиях.

- ▶ Разница между температурами воздуха внутри и снаружи должна быть довольно большой (около 20 К, напр., температура внутри 20°С и температура снаружи 0°С).
- Колебания этих температур (напр. днём/ночью) должны быть в период измерения как можно меньшими.
- Необходимо получение и запись измеренных значений на протяжении достаточно долгого периода времени (в течение одного или более дней), параметры должны рассчитываться на основании средних значений.

Информация по заказу

Измерительная система ALMEMO® - с 2 датчиками температуры и 1 пластиной для измерения теплового потока - для определения коэффициента теплопередачи U - с расчётом в измерительном приборе ALMEMO®:

Регистратор данных ALMEMO® 2590-4S, 4 входа	Артикул MA25904S
Блок питания	Артикул ZA1312NA8
Кабель данных ALMEMO®, интерфейс RS232, электроизолированный	Артикул ZA1909DK5
Датчик (термокабель) температуры наружного воздуха с изоляцией из стекловолокна, длина 5 м	Артикул FTA3900L05
Датчик (термокабель) температуры внутреннего воздуха с изоляцией из стекловолокна, длина 1,5 м	Артикул FTA3900
Программирование внутреннего датчика - дифференциальный канал и среднее значение	Артикул OA9000PRUT
Пластина для измерения теплового потока, элементы для монтажа, см. Стр. 14.04	
напр., Тип 118, прибл. 120 x 120 мм, кабель 2 м	Артикул FQA018C
Программирование пластины: среднее значение и канал коэффициента U	Артикул OA9000PRUQ

Измерительная система ALMEMO® - с 4 датчиками температуры и 1 пластиной для измерения теплового потока - для определения коэффициента теплопередачи U - с ПО WinControl (использование онлайн и оффлайн)

интерфейс RS232	Артикул MA26908AKS
Датчик (термокабель) температуры наружного воздуха с изоляцией из стекловолокна, длина 5 м	Артикул FTA3900L05
Датчик (термокабель) температуры наружной поверхности с изоляцией из стекловолокна, длина 5 м	Артикул FTA3900L05
Датчик (термокабель) температуры внутреннего воздуха с изоляцией из стекловолокна, длина 1,5 м	Артикул FTA3900
Датчик (термокабель) температуры внутренней поверхности с изоляцией из стекловолокна, длина 1,	5 м Артикул FTA3900

Пластина для измерения теплового потока, элементы для монтажа, см. Стр. 14.04

Регистратор данных ALMEMO® 2690-8, 5 входов, включая блок питания и кабель данных,

напр., Гип 118, прибл. 120 x 120 мм, кабель 2 м	Артикул FQA018C
ПО WinControl для 20 измерительных точек, 1 устройство	Арт. SW5600WC1
Дополнительный модуль - помощник по коэффициенту U	Арт. SW5600WCZM4
Ключ-заглушка для USB	Артикул SW5600HL

Принадлежности

 Теплопроводящая паста, 20 мл
 Артикул ZB9000WP

 Чехол для транспортировки, большой
 Артикул ZB2590TK2

Www.ahlborn.com

тепловой поток

Пластина для измерения теплового потока FQA х

Технические характеристики:

- ▶ Определение плотности теплового потока до +150°C.
- Практичная конструкция, состоит из меандра термопар, установленных на подложку.
- На пластинах с толстой подложкой не возникает боковых отклонений теплового потока из-за достаточной граничной зоны меандра.
- ПО для измерения коэффициента теплопроводности (К), см. Стр. 06.07.

Каждая пластина имеет калибровочное значение, которое соответствует плотности теплового потока в Вт/м² при выдаваемом значении пластины 1 мВ. Калибровочное значение сохраняется В коннекторе $\mathsf{ALMEMO}^{\ensuremath{(\!\!R\)}}$ в качестве заводской уставки для того, чтобы устройства ALMEMO® отображали плотность теплового потока сразу в Bт/м².

Версии	(включая соединительный кабель, 2 м, с коннектором ALMEMO® и сертиф	рикатом ис	пытаний)
Модель	Применение		
117	для ровных поверхностей, например, оконный профиль	Артикул	FQA017C
118	универсальное применение, например, солнечные установки и изоляционные плиты	Артикул	FQA018C
119	особенно для строительного производства, изоляционные плиты кирпичных стен, старинные здания	Артикул	FQA019C
120	пластина небольших размеров, например, в медицине, ветеринарии, небольшие конструкции	Артикул	FQA020C
117 SI	гибкая пластина, для ровных поверхностей, например, оконный профиль	Артикул	FQA017CSI
118 SI	гибкая пластина, для ровных поверхностей, например, солнечные установки и изоляционные плиты	Артикул	FQA018CSI
150-1	гибкая пластина, подходит для высоких температур, например, кирпичные стены, изолированные котлы и трубы	Артикул	FQA0801H
150-2	подходит для высоких температур, особенно для строительного производства,		
	например, стены и изоляционные пластины	Артикул	FQA0802H

Технические данные

Тип	Размеры Раз	мер меандра	Подложка	Термостойкость	. Калибр. знач.	Погрешность
	(MM)	(MM)			(BT/M² ≈ 1 MB)	калибр. знач.
117	100 x 30 x 1.5	80 x 20	эпокс. смола	-40 +80°C	< 50	5% при +23°C
118	120 x 120 x 1.5	90 x 90	эпокс. смола	-40 +80°C	< 15	5% при +23°C
119	250 x 250 x 1.5	180 x 180	эпокс. смола	-40 +80°C	< 8	5% при +23°C
120	33 Ø x 1.5	20 Ø	эпокс. смола	-40 +80°C	< 150	6% при +23°C
117SI	100 x 30 x 3	80 x 20	силикон	-40 +80°C	< 50	5% при +23°C
118SI	120 x 120 x 3	90 x 90	силикон	-40 +80°C	< 15	5% при +23°C
150-1	180 x 100 x 0.6	170 x 90	тефлон	150°C	< 80	5% при +25°C
150-2	500 x 500 x 0.6	490 x 490	тефлон	150°C	< 10	5% при +25°С

Принадлежности:

Теплопроводящая паста Артикул ZB9000WP Клейкая лента для комнатной температуры Артикул ZQ9017KB Самоклеящаяся плёнка 24 х 100 см для комнатной температуры Артикул ZQ9017KF

198303, г. Санкт-Петербург, а/я 27. Тел.: +7 (812) 327-23-20, 340-00-38. www.vec-ing.ru.

собой право вносить технические изменения

ООО «Вектор-Инжиниринг» - Официальный дистрибьютор Ahlborn Almemo® в РФ и странах СНГ.

01/2011

оставляем за

МЫ

ВЛАГОСОДЕРЖАНИЕ

Датчик влагосодержания FHA 696 MF

- Датчик для определения содержания влаги в строительных материалах минерального происхождения, в деревянных конструкциях и в картоне.
- Косвенное измерение влажности почвы через определение диэлектрической постоянной.
- Ёмкостное измерение через высокочастотное электромагнитное поле, которое проникает через материал без его разрушения.

Принадлежности:

Испытательный стенд для минеральных строительных материалов Артикул ZB9696PE05

Испытательный стенд для древесины,

бумаги, картона Артикул ZB9696РЕ30

Версии:

Датчик влагосодержания

Артикул FHA696MF

Технические данные

Способ измерения:	Ёмкостный	
Разрешение: 0.1%		
Диапазон измерений в	лаги: 050% влаги	
Диапазон измерений влагосодержания:	в материалах минерального происхождения: 020%, древесина: 0 50%, бумага и картон: 0 20%	
Корпус:	пластиковая рукоятка со встроенной интегральной схемой, 40 мм Ø, длина 130 мм	
Клеммная колодка:	Алюминий/пластик 20 x 25 x 70 мм	
Измерительный	Пружина из нержавеющей	
наконечник:	стали, 0.5 мм, 70 х 35 мм	
Bec:	260 г	
Номинальная температ	rypa: +15+25°C	
Рабочий диапазон:	0+60°C	
Температура хранения	: -20+80°C	
Выход сигнала:	02 B	
Электропитание:	+8+12B	
Потребление тока:	прибл. 7мА	

Датчик влагосодержания дерева FHA 636 MF, ручной, для мобильных измерений

- Датчик для определения влагосодержания в материалах из дерева.
- Измерения содержания влаги по принципу проводимости.
- Определение влагосодержания по зависимости электросопротивления от влагосодержания.

Принадлежности:

Измерительный наконечник с тефлоновой изоляцией - помогает избежать ошибок при измерении поверхностной влажности, 1 шт. (необходимо 2 шт. на датчик) **Артикул ZB9636MFST**

Технические данные

Способ измерения:	принцип проводимости
Диапазон измерений:	730 % влаги в древесине
Корпус:	пластиковая рукоятка
	Ø 40мм, длина 130 мм
Измерительные	нержавеющая сталь,
наконечники:	неизолированная,
	Ø 3 мм, длина 50 мм
Bec:	260 г
Воспроизводимость:	± 1%
Номина. температура:	+23°C ±2°C
Рабочая температура:	0+60°C
Температура хранения	: -20+80°C
Выход сигнала:	02 B
Электропитание:	+7.5+12B
Потребление тока:	макс. 10 мА

Версии:

Датчик влагосодержания дерева **Артикул FHA636MF**

01/2011

Мы оставляем за

собой право

вносить

технические изменения

ВЛАГОСОДЕРЖАНИЕ

Датчик влагосодержания древесины, для долгосрочных измерений FHA 636 MF10

- Датчик влагосодержания в древесине для продолжительных измерений;
- Коммутируемый ток датчика (циклический режим) препятствует засолению или высушиванию материала;
- Предназначен для долгосрочных измерений деревянных конструкций зданий.

Работа устройства в режиме ожидания (SLEEP Mode) невозможна.

Версии

Датчик влагосодержания в древесине для долгосрочных измерений, включая измерительные наконечники и соединительный кабель $ALMEMO^{\otimes}$

Артикул FHA636MF10

Технические данные

Способ измерения: Принцип проводимости.

Циклический режим для продолжительных измерений. Каждые 120 минут производится измерение (на короткое время включается измерительный ток); в промежутках измерительный ток отключен.

Диапазон измерений: 5...50 % влаги в древесине

Корпус Металлический корпус 65 x 60 x 35 мм (ДхШхВ) с кабельными гермовводами

Измерительный стационарный, 2 кабеля датчика, кабель: тефлоновая изоляция, длина 0,1 м

(= макс. возможная длина),

кольцеобразные кабельные наконечники, диаметр 4 мм

Измерит. наконечники: 2 шпильки с резьбой М4 из

нерж. стали, общ. длина = 60 мм, 4 гайки из нерж. стали,

2 запорные шайбы из нерж. стали

Монтажный зазор: 2.5 см под прямым углом,

поперёк волокна древесины

Рабочая температура: 0...+60 °C

Источник напряжения: через коннектор ALMEMO®

Соединительный кабель: ПВХ, длина = 5 м,

с коннектором ALMEMO®

вносить технические изменения

собой право

оставляем за

МЫ

ТОЧКА РОСЫ, ОБНАРУЖЕНИЕ ВОДЫ

Детектор точки росы FHA 9461

- Детектор для определения условий выпадения росы.
- Состоит из датчика температуры и встроенного сенсорного чипа с ССС-датчиком росы.
- Особенно подходит для контрольных измерений и стационарного монтажа в строительной физике.
- Детектор точки росы выдаёт не измерительный сигнал, а ступенчатую функцию: выпадение росы (100%) / нет росы (0%).

Версии:

Датчик и электроника встроены в коннектор ALMEMO®, датчик смонтирован на теплопроводную алюминиевую пластину **Артикул FHA9461**

Технические данные

Принцип измерений: ССС-датчик Рабочий диапазон: 0...+70°C (без льдообразования, без солеобразующей атмосферы) Время установления: конечное значениее после сигнала 2...60 секунд Датчик температуры: NTC тип N (10k при +25°C), погрешность: ±0.1°C (в рабочем диапазоне) масштабируемое напряжение, Выход сигнала: прибл. 0...1В Потребление тока: прибл. 3 мА Теплопроводная пластина: алюминий, 40 х 40 мм

Температура хранения: -10...+70°C

Технические данные

Зонд для обнаружения воды FHA 936 WD

- ▶ Зонд для быстрого обнаружения несвязанной воды.
- Удобен для измерений при строительных работах, особенно на участках, недоступных для визуального контроля, например, на уплотняющих швах, под цементными полами и т. д.
- Измерения содержания влаги по принципу проводимости..
- Зонд с двумя цангами для лёгкой замены электродов.
- ▶ Три типа электродов для различного назначения.

Версии:

Зонд для обнаружения воды Артикул FHA936WD

технические данные		
Метод измерения:	Обнаружение воды	
Значения измерений:	<10% вода отсутствует >10% вода присутствует	
Корпус:	Пластиковая рукоятка 40мм Ø, длина 130 мм	
Электроды:	Нержавеющая сталь	
Тип электродов:	Неизолированные с закруглёнными концами: длина 200 мм, 3мм Ø	
	Неизолированные с острыми концами: длина 50мм, 3мм Ø	
	Пружинная сталь: длина 200мм, ширина 6мм, высота 0,5мм	
Bec	260 г	
Ном. температура:	23°C ±2°C	
Рабочая температура:	:0 до +60°C	
Температура хранени	я: -20 до +80°C	
Выход сигнала:	ALMEMO® (прибл 0 до 2B)	
Питание:	7.5 до 15В	
Потребление тока:	макс. 10мА	

Мы оставляем за

собой право вносить технические изменения

ВЛАГОСОДЕРЖАНИЕ

uew!

Датчик FHA 696 GF1 для определения влагосодержания в гранулятах: щепа, древесные гранулы и опилки

- Датчик работает по принципу плоского конденсатора открытого типа. Влагосодержание может определяться по диэлектрической постоянной материала.
- Очень быстрое определение влагосодержания в щепе, древесных гранулах, опилках, зерновых и других гранулированных материалах.
- ▶ Широкий диапазон измеряемых материалов.

Технические данные

Принцип измерений:	Ёмкостный
Рабочий диапазон: 099,9 % содержания в весовой процент Н₂О	
Разрешение:	0.1 %
Радиус измерения /г.	лубина проникновения
	около 10 см вокруг датчика
Температура материа	ала: +5+40 °C
Рабочая температура	a: +5 +40 °C
Температура хранен	ия: -20+70 °C
Выход сигнала:	ALMEMO® (напряжение)
Питание:	5 В от измерит. устройства ALMEMO®
Потребление тока:	прибл. 5 мА
Размеры	
Головка датчика:	Ø = 22мм, длина = 200 мм
	Закруглённый наконечник
Трубка-удлинитель:	3 шт., навинчивающийся
	Ø = 18 мм, длина = 300 мм
Задняя часть:	Пластик
	Ø = 22 мм, длина = 30 мм
Подключение кабеля	: Коннектор, устанавливаемый
	на головку датчика
Кабель: ПВХ	, длина = 2 м
с ко	ннектором ALMEMO®.

Кабель проходит через

трубку-удлинитель и заднюю часть.

Опции:

Определение характеристик материала

- 1. Нам необходим образец, около 10 л вашего гранулята (напр. древесина, зерновые культуры, пластик). Материал должен быть упакован в воздухонепроницаемую упаковку.
- 2. Мы определяем характеристики вашего материала.
- 3. Затем мы программируем данные характеристики в коннекторе ALMEMO® для датчика влагосодержания.

Услуга по проведению исследований материала

Артикул ОА9696GFK

Рекомендации:

Если материал негигроскопичен, то определение влагосодержания невозможно. В таком случае стоимость исследований будет снижена.

Версии

Датчик определения влагосодержания в гранулированных материалах:

Головка датчика, 3 навинчивающихся трубки-удлинителя, задняя часть, соединительный кабель, 2м, коннектор ALMEMO®, запрограммированный на щепу (также программируется на древесные гранулы, если необходимо - пожалуйста, укажите), кейс для транспортировки **Артикул FHA696GF1**

Испытательный стенд для FHA696GF для щепы и древесных гранул

Артикул ZB9696PE22

WWW.ahlborn.com

изменения

вносить технические

собой право

39

оставляем

МЫ

ВЛАЖНОСТЬ ПОЧВЫ

Измерение влажности почвы

путем определения давления

Тензиометр ZB 9602 ТМххх

- Измерение влагосодержания почвы через определение всасывающего давления.
 Всасывающее давление - это сила, которую необходимо приложить растению для абсорбции воды.
- Засчет капиллярной тяги вода перемещается через наконечник в более сухую почву, создавая отрицательное давление в закупоренной трубке.
 Это давление измеряется и отображается манометром в гПа.
- Тензиометр работает также в сухом воздухе, поэтому возможно измерение влажности в грубозернистом или рыхлом субстрате.
- Измерение всасывающего давления независимо от содержания соли в субстрате или почве.

Электроника: 0...1000 гПа Вставной тензиометр L2 Артикул ZB9602TML2

всасывания.

0...900 гПа

Технические данные:

Измерение:

Диапазон измерений:

Тензиометр: Электроника:

Керамический наконечник: Цилиндр., Ø 20 x 65 мм

Общ. длина: Глубина погружения: прибл. 340 мм

станд. 250 мм

Вставной тензиометр LV Артикул ZB9602TMLV

Керамический наконечник: Цилиндр., Ø 15 x 40 мм

Общ. длина: прибл. 210 мм Глубина погружения: станд. 120 мм

Станд. всасывающее давление в торфяном субстрате

30...40 гПа повышенная влажность 50...120 гПа влажно 150...200 гПа подсушено

> 200 гПа сухо

Вставной тензиометр LKV2 Артикул ZB9602TMKV2

Общая длина: прибл. 160 мм Глубина погружения: станд. 70 мм

Станд. всасывающее давление на открытой местности (средняя категория грунта)

< 50 гПа насыщенный 100...150 гПа мокрый-влажный > 200 гПа начинает подсыхать 200...500 гПа необходим полив

Поверхностный тензиометр FO Арт. ZB9602TMFO

Датчик полностью пористый, для измерений тонких слоёв субстрата.

Габариты: 65 мм, Ø 70 мм Глубина погружения: прибл. 30-60 мм

Поверхностный тензиометр FV Арт. ZB9602TMFV

Стандартная модель для матов-накопителей влаги или для общих измерений на влажных поверхностях.

Габариты: 65 мм, Ø 70 мм

Электронный компонент тензиометра

Диапазон измерений: 0...1000 гПа Выход: 0 до 10 В

Питание: 12 В от устройства ALMEMO®

Электронный компонент навинчивается на тензиометр с соединительным кабелем ALMEMO®, длина 7 м **Артикул FDA602TM1**

Запасной электронный компонент тензиометра как и FDA602TM1, но без соединительного

как и грабодтм1, но без соединительного кабеля ALMEMO® **Артикул FD9602TM1**

Запасной соединительный кабель ALMEMO®, длина 7 м **Артикул ZA9602AKTM1**

<u>М</u>

оставляем за

собой право вносить технические изменения

тепловой поток

ALMEMO® D6

Цифровая пластина для измерения теплового потока FQADx с разъёмом ALMEMO® D6 и встроенным датчиком температуры для автоматической коррекции температурного коэффициента пластины

Особенности:

- Новинка: Автоматическая корректировка температурного коэффициента пластины с помощью миниатюрного встроенного NTC датчика, измеряющего среднюю температуру пластины.
- № Измерение теплового потока и температуры одним и тем же 24-битным АЦП, встроенным в разъём ALMEMO® D6.
- 2 измерительных канала запрограммированы на заводе-изготовителе:
 - Средняя температура пластины (°C, t);
 - Тепловой поток, температурная компенсация (BT/M^2 , fq).

Общие характеристики и принадлежности, датчиков ALMEMO® D6

см. Обзор ALMEMO® D6

Технические данные

Датчик теплового потока

(см. таблицу на Стр. 14.04)

Точность калибровочного значения при номинальной температуре: 5% Номинальная температура: +23 °C

Температурный коэффициент:

-0.12 % / K (эпоксидная пластина) или -0.17 % / K (силиконовая пластина)

Датчик температуры

Чувствит. элемент: Миниатюрный NTC, тип N Точность: ± 0.5 K при 0 от +80 °C

АЦП, встроенный в разъём ALMEMO® D6

Вход 1 Датчик NTC

(зажимной коннектор)

Диапазон измерений: -50.00...+125.00 °C

Точность линеаризации: $\pm 0.05 \text{ K}$ Вход 2 Напряжение мВ

(зажимной коннектор)

Диапазон измерений: 0...26 мВ, 0...260 мВ АЦП: Дельта-сигма, разрешение 24 бит

Точность системы: 0.02 % ±1 цифра Температурный дрейф: 0.003 % / K

Скорость обновления: 0,4 сек. для обоих каналов

Напряжение питания: 6...13 В DC Потребление тока: 4 мА

Принадлежности

см. Стр. 14.04

Тип 117, 118, 119

Версии (включая сертификат заводских испытаний)

Цифровая пластина для измерения теплового потока со встроенным датчиком температуры и стационарным кабелем, $\mathsf{\Pi}\mathsf{BX}$, длина 2 м, разъём $\mathsf{ALMEMO}^{\otimes}\mathsf{D6}$.

Тип 117	подложка - эпоксидная смола, размеры 100 х 30 х 1.5 мм	Артикул FQAD17T
Тип 118	подложка - эпоксидная смола, размеры 120 x 120 x 1.5 мм	Артикул FQAD18T
Тип 119	подложка - эпоксидная смола, размеры 250 x 250 x 1.5 мм	Артикул FQAD19T
Тип 117	подложка - силикон, размеры 100 х 30 х 3 мм	Артикул FQAD17TSI
Тип 118	подложка - силикон, размеры 120 x 120 x 3 мм	Артикул FQAD18TSI

